Analytical Reference Materials International

Certificate of Analysis Certified Reference Material

Grade: Alloy C-22 / UNS N06022

Part Number (Q.A. NO.): IARM 65B

Certification Date: 05/26/1999 Certificate No.: 65B-05261999-IARM-F

Revision Date: 03/19/2003

Interpretation of Data

- 1. Certified values listed below reflect analysis results submitted by qualified analytical laboratories using a combination of methods and instrumentation that emulate actual methods and instrumental techniques currently utilized in the analytical community.
- 2. Any data reported and enclosed by a **parentheses** () is a "best estimate" and is NOT CERTIFIED. This data could not be quantified sufficiently for certification. It was however, reported by enough laboratories to be considered as potentially present in the matrix of the material being examined.
- 3. The "Inter-laboratory Analysis Program" (ILAP) utilized in the establishment of the data are an ongoing program with permanent membership. Certain elements may be selected by a consensus of the members for more extensive testing. Therefore the data in **brackets** [] indicates further testing is in process.
- 4. The "± Confidence Interval at 95%" is enclosed by a parentheses () below the individual element's concentration.

IMPORTANT: A "User Registration Card" accompanies all shipments. This card should be completed immediately upon receipt of materials with the appropriate user information. This is the only way in which ARMI can guarantee customer updates or possible data modifications!

Aluminum 0.283 (0.008)	<u>Boron</u> (0.002)	<u>Carbon</u> 0.0054 (0.0006)	<u>Cobalt</u> 0.59 (0.01)	Chromium 21.32 (0.03)	<u>Copper</u> 0.054 (0.002)	<u>Iron</u> 3.63 (0.04)	<u>Magnesium</u> 0.009 (0.001)
<u>Manganese</u> 0.29 (0.01)	Molybdenum 13.02 (0.03)	<u>Nitrogen</u> 0.046 (0.001)	<u>Niobium</u> 0.029 (0.002)	<u>Nickel</u> 57.3 (0.3)	<u>Oxygen</u> 0.0013 (0.0005)	Phosphorus 0.006 (0.0006)	Sulfur 0.0005 (0.0001)
<u>Silicon</u> 0.030 (0.006)	<u>Tantalum</u> (0.06)	<u>Tin</u> (0.001)	<u>Titanium</u> 0.005 (0.002)	<u>Vanadium</u> 0.155 (0.004)	<u>Tungsten</u> 2.87 (0.02)	<u>Zirconium</u> <0.001	

The laboratories participating in the "Inter-Laboratory Analysis Program" (ILAP) and certification of this material are as follows:

Allegheny Ludlum Corp Brackenridge, PA	Allvac - Monroe, NC
Allvac Lockport - Lockport, NY	Anderson Laboratories, Inc Greendale, WI
Bodycote Metal Analysis, Inc Huntington Park, CA	Cannon Muskegon Corp Muskegon, MI
Chicago Spectro Service Laboratories - Chicago, IL	Haynes International, Inc Kokomo, IN
Howmet Research Center - Whitehall, MI	Laboratory Testing, Inc Hatfield, PA
Lockheed Martin Astronautics - Littleton, CO	Special Metals Corporation - Huntington, WV

Traceability: All members of the "Inter-Laboratory Analysis Program" (ILAP) listed above validate test methods and instrument performance utilizing SRMs produced by the National Institute of Standards and Technology, (NIST) as well as other CRMs and RMs produced by recognized Certifying Bodies from around the world. The specific SRMs, CRMs and RMs applicable to the material covered by this certificate are: NIST 349, SPEX 6-37AL, 6-27B, 6-89CO, 6-137CU, 6-90FE, 5-151MG, 6-55MN, 5-96MO, 5-177NB, 6-140NI, 5-149P, 6-92SI, 5-156TI, 6-72V, 6-51W, 6-54ZR, 6-60CA, 5-175LA, 6-2TA, 5-139Y, 5-94ZN, KD 760-3, AR 556, LECO 501-505, 501-645, NIST C1151, C11525, C1153, C1154, 1155, 1193, 1194, 1195, 1230, C2400, JSS 650, 651, 652, 653, 654, 655, BCS 331, 332, 333, 334, 335, 336, 337, 338, ARMCO 8709, 8710, 8711, Cartech 440F, 303-SE, 316, 455, 630, 416C, 430F, D2, Custom 450, NIST 131F, IARM 65A, NIST C1251, 1159, 1160, 1186, 1187, 1188, 1190, 1191, 1192, 1193, 1195, 1197, 1198, 1201, 1203, 1204, 1205, 1206/2, 1207/1, 1207/2, 1208/1, 1208/2, 1243, 1244, 1245A, 1247, 1271, 1762, 131F, 367, 6G, LECO 501, 502, 501-504, 501-674, 502-016, BS H6A, H6, CSN-4, IARM 65A, LECO 501-674, 502-256, 502-106, NIST 3101A, 3131A, 3155, 3107, 131F, 101G, IARM 65B, BSH6A, LECO 501-504, 501-676, 501-502, 501-674, BS CSN-4, NIST 868, 2159, 865, 3113, 3126A, 3134, 1736, 356, 2159, 3163, HS 36890, BS H2A, BSH6, BSH6A, NIST 1765, 361, 349a, 661, 367, 2165, 16f, 1254, 1187, 363, 2423, 2425a, 2424a, 168, 348a, 367, 364, 123b, 363, 132b, c2402, 3167, 160b, 1208-1, 134a, 173b, 135, 155, 343a, 1187, LECO 401-553

A specific line of traceability is established to NIST and other Certifying Bodies for those elements that are noted as "Certified Values" on the Certificates of Analyses referenced above.

See Reverse Side for Statistical Data and Additional Information Regarding this Material.

The following data and accompanying statements represent all pertinent information reported in the ILAP as it applies to the chemical characterization of this material as of 03/17/2003.

											·						
65B	Al	В	С	Co	Cr	Cu	Fe	Mg	Mn	Mo	Ν	Nb	Ni	0	Р	S	Si
1	0.277	0.0004	0.0056	0.58	21.25	0.053	3.68	0.0094	0.28	13.011	0.045	0.031	57.33	0.0012	0.005	0.0005	0.026
2	0.271	0.0036	0.0058	0.618	21.371	0.053	3.63	0.0107	0.296	12.98	0.046	0.031	57.09	0.0011	0.007	0.0005	0.023
3	0.273	< 0.0001	0.0046	0.619	21.296	0.0513	3.666	0.0084	0.270	13.065	0.044	0.0304	57.744	0.0010	0.007	0.0004	0.027
4	0.284	< 0.0002	0.0056	0.596	21.27	0.057	3.669	0.0071	0.27	12.988	0.0473	0.028	57.49	0.0009	0.006	0.0006	0.028
5	0.282	0.0017	0.0065	0.58	21.387	0.052	3.61	0.0094	0.3085	12.96	0.0439	0.029	57.24	0.0002	0.006	0.0003	0.027
6	0.285	< 0.002	0.0047	0.59	21.33	0.056	3.58	0.008	0.312	13.05	0.046	0.028	56.9759	0.0018	0.005	0.0005	0.039
7	0.29512	< 0.001	0.0049	0.598	21.27	0.056	3.615	0.007	0.289	13.015	0.04708	0.025	56.917	0.0024	0.005		0.04
8	0.2954	< 0.00001		0.619	21.37	0.0554	3.54	0.0090	0.29	13.10	0.047	0.03166		0.00155	0.0055		
9		< 0.002		0.57	21.30		3.7060		0.29	12.99	0.046	0.0272			0.006		
10				0.563	21.34682				0.299	13.030	0.044				0.0052		
11				0.5937					0.280		0.0462						
12									0.292								
13									0.253								
Mean	0.2828	0.0019	0.0054	0.5935	21.3191	0.0542	3.6329	0.0086	0.2869	13.0189	0.0457	0.0290	57.2553	0.0013	0.0058	0.0005	0.0300
STDV.	0.0092	0.0016	0.0007	0.0193	0.0486	0.0021	0.0527	0.0013	0.0163	0.0430	0.0013	0.0022	0.2943	0.0007	0.0008	0.0001	0.0067
Certified	0.283	(0.002)	0.0054	0.59	21.32	0.054	3.63	0.009	0.29	13.02	0.046	0.029	57.3	0.0013	0.006	0.0005	0.030
95% C.I.	0.008		0.0006	0.01	0.03	0.002	0.04	0.001	0.01	0.03	0.001	0.002	0.3	0.0005	0.0006	0.0001	0.006
Methods	X,I,O	D,I,O	C,O	X,I,O	X,W,O	X,A,I	X,I,O	A,I,O	X,I,O	X,W,I,O	F	X,I,O	X,W,I,O	F	X,W,I,O	С	X,I,O
$\frac{ \mathbf{M}(\mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} $																	
	l	Methods:	W = Cla	ssical, C =	- Combusti	ion, F = F	usion, A =	AA or G	FAA, I =	, , , ,		DC Arc, (D = OE, X	= XRF, C			,,,-
65B	1		1		1	·			· · · · ·	ICP or D	CP, D = 1	· · · · ·		·	G=GDMS		
65B	Ti	V	W	Zr	Ag	As	Bi	Ca	Н	ICP or D La	CP, D = 1 Pb	Sb	Se	Sn	G=GDMS Ta	Y	Zn
1	1	V 0.161	W 2.85		1	As	Bi <0.00005	Ca	· · · · ·	ICP or D	CP, D = 1 Pb 0.0020	· · · · ·		·	G=GDMS		
	Ti 0.006	V 0.161 0.152	W 2.85 2.858	Zr 0.0004	Ag 0.0004	As	Bi	Ca	Н	ICP or D La	CP, D = 1 Pb	Sb	Se <0.0001	Sn 0.00092	G=GDMS Ta <0.010	Y	Zn
1 2	Ti 0.006 0.002	V 0.161	W 2.85	Zr 0.0004 <0.01	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = Pb 0.0020 <0.001	Sb	Se <0.0001 0.0016	Sn 0.00092 0.0015	G=GDMS Ta <0.010 0.07	Y	Zn
1 2 3	Ti 0.006 0.002 0.004	V 0.161 0.152 0.1547	W 2.85 2.858 2.884	Zr 0.0004 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	G=GDMS Ta <0.010 0.07 0.0354	Y	Zn
1 2 3 4	Ti 0.006 0.002 0.004 0.005	V 0.161 0.152 0.1547 0.151	W 2.85 2.858 2.884 2.83	Zr 0.0004 <0.01 <0.0001 0.008	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	G=GDMS Ta <0.010 0.07 0.0354 <0.001	Y	Zn
1 2 3 4 5	Ti 0.006 0.002 0.004 0.005 0.0022	V 0.161 0.152 0.1547 0.151 0.157	W 2.85 2.858 2.884 2.83 2.915	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	G=GDMS Ta <0.010 0.07 0.0354 <0.001 <0.001	Y	Zn
1 2 3 4 5 6	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159	W 2.85 2.858 2.884 2.83 2.915 2.882	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	G=GDMS Ta <0.010 0.07 0.0354 <0.001 <0.001 0.012	Y	Zn
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7 \end{array} $	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148	W 2.85 2.858 2.834 2.83 2.915 2.882 2.87	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.001 <0.01	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	Ta <0.010 0.0354 <0.001 <0.001 0.012 0.11	Y	Zn
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \end{array} $	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159	W 2.85 2.858 2.834 2.83 2.915 2.882 2.87 2.856	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	Ta <0.010 0.0354 <0.001 <0.001 0.012 0.11	Y	Zn
1 2 3 4 5 6 7 8 9	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.159	W 2.85 2.858 2.834 2.83 2.915 2.882 2.87 2.856 2.827	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	Ta <0.010 0.0354 <0.001 <0.001 0.012 0.11	Y	Zn
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline $	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.159	W 2.85 2.858 2.858 2.884 2.83 2.915 2.882 2.87 2.856 2.827 2.93	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	Ta <0.010 0.0354 <0.001 <0.001 0.012 0.11	Y	Zn
1 2 3 4 5 6 7 8 9 10 11	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.159	W 2.85 2.858 2.884 2.83 2.915 2.882 2.87 2.856 2.827 2.93 2.892	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca	Н	ICP or D La	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.001 0.0018	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	Ta <0.010 0.0354 <0.001 <0.001 0.012 0.11	Y	Zn
1 2 3 4 5 6 7 8 9 10 11	Ti 0.006 0.002 0.004 0.005 0.0022 0.005	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.159	W 2.85 2.858 2.84 2.83 2.915 2.882 2.87 2.856 2.827 2.93 2.892 2.7900	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.01 <0.0001	Ag 0.0004	As	Bi <0.00005 <0.0001	Ca 0.0002	H 0.0002	ICP or D La	CP, D = Pb 0.0020 <0.001 0.0001 <0.0018 <0.0001	Sb	Se <0.0001 0.0016 <0.0001	Sn 0.00092 0.0015	General Sector Ta <0.010 0.07 0.0354 <0.001 <0.012 0.11 0.0775	Y	Zn 0.0001
1 2 3 4 5 6 7 8 9 10 11 12	Ti 0.006 0.002 0.004 0.005 0.0022 0.005 0.0080	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.159 0.148 0.159 0.159	W 2.85 2.858 2.884 2.83 2.915 2.882 2.87 2.856 2.827 2.93 2.892	Zr 0.0004 <0.01 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0253	Ag 0.0004 <0.0001	As 0.00018	Bi <0.00005 <0.0001 <0.00003	Ca 0.0002	H 0.0002	ICP or D La <0.0001 #DIV/0!	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.0018 <0.0001 0.0013	Sb <0.0001	Se <0.0001 0.0016 <0.0001 <0.00005	Sn 0.00092 0.0015 0.0010	Geodesic Geodesic Ta <0.010 0.07 0.0354 <0.001 <0.012 0.11 0.0775 0.001 <0.0010 0.0010 <0.0010	¥ <0.0001	Zn 0.0001
1 2 3 4 5 6 7 8 9 10 11 12 Mean	Ti 0.006 0.002 0.004 0.005 0.0022 0.005 0.0080	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.159 0.147 0.147	W 2.85 2.858 2.84 2.83 2.915 2.882 2.87 2.856 2.827 2.93 2.892 2.7900 2.8653	Zr 0.0004 <0.01 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.001 <0.01253	Ag 0.0004 <0.0001	As 0.00018	Bi <0.00005 <0.0001 <0.00003 #DIV/0!	Ca 0.0002	H 0.0002	ICP or D La <0.0001 #DIV/0!	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.0018 <0.0001 0.0013	Sb <0.0001	Se <0.0001 0.0016 <0.00005	Sn 0.00092 0.0015 0.0010	Geodesic Geodesic Ta <0.010 0.07 0.0354 <0.001 <0.012 0.11 0.0775 0.001 <0.0010 0.0010 <0.0010	¥ <0.0001	Zn 0.0001
1 2 3 4 5 6 7 8 9 10 11 12 Mean STDV.	Ti 0.006 0.002 0.004 0.005 0.005 0.002 0.005 0.0080	V 0.161 0.152 0.1547 0.151 0.157 0.159 0.148 0.159 0.147 0.159 0.147	W 2.85 2.858 2.858 2.858 2.884 2.83 2.915 2.882 2.87 2.856 2.827 2.932 2.7900 2.8653 0.0391	Zr 0.0004 <0.01 <0.0001 0.008 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0012	Ag 0.0004 <0.0001	As 0.00018	Bi <0.00005 <0.0001 <0.00003 #DIV/0!	Ca 0.0002	H 0.0002	ICP or D La <0.0001 #DIV/0!	CP, D = 1 Pb 0.0020 <0.001 0.0001 <0.0018 <0.00018 <0.00011 0.0013 0.0013 0.0010	Sb <0.0001	Se <0.0001 0.0016 <0.00005	Sn 0.00092 0.0015 0.0010	General Section Ta <0.010 0.07 0.0354 <0.001 0.012 0.011 0.0175 0.0775 0.011 0.00775 0.012 0.011 0.00775	¥ <0.0001	Zn 0.0001

The International Standards Organization (ISO) definitions, expressed in ISO Guide 30-1981-(E) list the following:

<u>Certifying Body:</u> A technically competent body (organization or firm, public or private) that issues a Reference Material Certificate. The only generally accepted certifying body in the United States is the U. S. Department of Commerce, National Institute of Standards & Technology, (NIST), Gaithersburg, MD.

Methods: W = Classical, C = Combustion, F = Fusion, A = AA or GFAA, I = ICP or DCP, D = DC Arc, O = OE, X = XRF, G=GDMS

X.D.A

A.0

X.I

<u>Reference Material (RM)</u>: A material or substance with one or more properties which are sufficiently well established to be used for calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

<u>Certified Reference Material (CRM)</u>: A reference material with one or more properties whose values are certified by a technically valid procedure accompanied by or traceable to a certificate or other documentation, which is issued by a Certifying Body.

Inter-Laboratory Analysis Program (ILAP): Although ASTM Standard E691-87 applies to inter-laboratory studies to "Determine the Precision of a Single Test Method", it is also a well thought out and logical plan for conducting an inter-laboratory program involving multiple techniques. Therefore, the planning, conducting, analyzing, protocol and treatment of data resulting from this inter-laboratory program were performed utilizing the guidelines established in ASTM E691-87.

<u>Methods of Analysis:</u> In view of the fact, that the "Inter-Laboratory Analysis Program" entails a wide variety of materials, no single analytical method would provide optimum data results. Therefore, the methods utilized were a combination of ASTM Standard Methods for classical wet chemistry, ICP, AA, Optical Emission and X-Ray spectrometric methods. The determinations for Carbon, Sulfur, Nitrogen and Oxygen are the result of combustion instrument procedures.

Selection of Materials: A "batch" or "series" is defined as a single bar of one continuous length. The majority of materials are in wrought condition. Other methods of manufacture are utilized as a last resort, <u>only in the case of those materials being unavailable in wrought condition</u>. "Batch" samples are taken by removing a one-inch cross section for every thirteen inches of total length from the entire bar. Twenty-five percent of the one inch cross section is converted to chips for analysis by classical wet chemistry, ICP, AA, and combustion procedures and seventy-five percent remains in a solid disk form for OES and X-Ray analysis where applicable. Each member of the ILAP is furnished both a solid sample and the corresponding supply of chips from a specific location on the batch bar. This massive sampling procedure results in the homogeneity being reflected as a product of the overall statistics and certified data.

Certified by: William

X,I,O X,I,O

Methods

X.I.O

X,I,O

William D. Britt, President/General Manager Analytical Reference Materials International

Certificate No.: 65B-05261999-ARM-F Certification Date: 05/26/1999 Revision Date/No.: 03/17/2003