

Certificate of Analysis IARM 26D

A286 / UNS S66286

Certified Reference Material

Certified Values listed in wt.% with associated uncertainties

Al	0.29 ± 0.01	В	0.0063 ± 0.0004	C	0.038 ± 0.002	Co	0.040 ± 0.005
Cr	14.29 ± 0.07	Cu	0.047 ± 0.004	Mn	0.224 ± 0.006	Mo	1.23 ± 0.01
N	0.0035 ± 0.0008	Nb	0.007 ± 0.003	Ni	24.6 ± 0.2	Р	0.013 ± 0.001
S	0.0008 ± 0.0006	Si	0.05 ± 0.01	Sn	0.0039 ± 0.0008	Ti	2.17 ± 0.04
V	0.223 ± 0.003	W	0.036 ± 0.007				

Indicative Values listed in ppm

As (30)	Ca (<5)	Ce (<150)	Mg (<50)	O (10)	Pb (<300)	Sb (<40)
Se (<300)	Ta (<80)	Zn (<200)	Zr (16)			

Description and Intended Use

This CRM may come in the form of a solid disc or chips. The intended use of this CRM may include, but is not limited to, the calibration of instruments and the validation of analytical methods.

Interpretation of Data

- 1. Certified values listed reflect analysis results submitted by qualified analytical laboratories using a combination of methods and instrumentation that emulate actual methods and instrumental techniques currently utilized in the analytical community, and are reported as wt% unless otherwise noted.
- 2. This material was tested using both the solid disks and chips prepared from individual sections of bar. The certified values are considered representative of the overall average composition of the material.
- 3. Any data reported and enclosed by a parentheses () is a "best estimate" and is not certified. This data could not be quantified sufficiently for certification. It was, however, reported by enough laboratories to be considered as potentially present in the matrix of the material being examined.
- 4. "Provisional Certificate of Analysis" reports values that support a fully certified reference material; it also indicates that values may be in a continued process of statistical evaluation and are subject to change.
- 5. Chips are not certified for Oxygen analysis.

The following data and accompanying statements represent all pertinent information reported in the ILAP as it applies to the chemical characterization of this material.

	Al	As	В	С	Ca	Ce	Со	Cr	Cu	Mg	Mn	Мо	N	Nb	Ni	0
1	0.2665	0.00066	0.005	0.0346	0.00025	0.015	0.0324	14.09	0.0395	0.0004	0.2037	1.1978	0.0028	0.00264	23.9057	0.0001
2	0.268	0.0022	0.0056	0.0346	0.0005		0.0327	14.099	0.0405	0.0008	0.213	1.21	0.00307	0.005	24.2555	0.00065
3	0.2688	0.0038	0.006	0.035	<0.0001		0.0331	14.1277	0.043	<0.0001	0.214	1.214	0.0033	0.005	24.317	0.0008
4	0.271	0.004	0.0061	0.037			0.034	14.1699	0.043	<0.005	0.218	1.219	0.0034	0.006	24.349	0.002
5	0.2754		0.0061	0.038			0.034	14.33	0.04327		0.22	1.2233	0.0034	0.0094	24.55	< 0.005
6	0.28		0.0062	0.0383			0.035	14.3352	0.044		0.2217	1.224	0.005	0.0107	24.6172	
7	0.287		0.0063	0.03844			0.0352	14.3451	0.0451		0.2253	1.232		0.013	24.69	
8	0.289		0.00661	0.0391			0.0359	14.35	0.046		0.2255	1.235			24.7101	
9	0.2892		0.0067	0.0393			0.038	14.37	0.046		0.226	1.2393			24.72	
10	0.292		0.0068	0.0402			0.043	14.37968	0.0462		0.2287	1.24			24.73	
11	0.2969		0.007	0.0407			0.05	14.38	0.05		0.232	1.242			24.7389	
12	0.311		0.00706	0.042			0.0515	14.388	0.0515		0.232	1.243			25.06	
13	0.327						0.0537	14.442	0.058		0.233	1.27401			25.121	
14	0.3329						0.054		0.061		0.2465	1.2904			25.25	
15																
Mean	0.29	0.003	0.0063	0.038			0.04	14.29	0.047	0.001	0.224	1.23	0.0035	0.007	24.6	0.0010
STDV.	0.02	0.002	0.0006	0.002			0.008	0.1	0.006	0.0003	0.01	0.02	0.0008	0.004	0.4	0.0008
Certified	0.29	(0.003)	0.0063	0.038	(<0.0005)	(<0.015)	0.040	14.29	0.047	(<0.005)	0.224	1.23	0.0035	0.007	24.6	(0.001)
95% C.I.	0.01		0.0004	0.002			0.005	0.07	0.004		0.006	0.01	0.0008	0.003	0.2	
Methods	X,O,I	X,O,I	O,I	O,I,C	O,I	0	X,O,I	X,W,O,I	X,O,I	O,I	X,O,I	X,O,I	I,F	X,O,I	X,O,I	I,F
	P	Pb	<u>S</u>	Sb	Se	Si	Sn	Ta	Ti	V	W	Zn	Zr		1	
1	0.0092	0.0000013		0.001	0.027	0.032	0.003	0.0032	2.055	0.216	0.0286	0.00075	0.001			
2	0.0109	0.0014	0.0002	<0.001	<0.001	0.035	0.003	0.008	2.08	0.2166	0.029	0.016	0.0013			
3	0.0111	0.0251	0.0002	<0.004	<0.001	0.037	0.0037	<0.001	2.1029	0.218	0.02935	<0.001	0.0019			
4 -	0.01142	<0.001	0.00032			0.04	0.0039	<0.001	2.1062	0.22	0.032		0.002			
5	0.0118	<0.001	0.0005			0.04148	0.00413	<0.001	2.1388	0.22	0.0332		<0.001			
6	0.012		0.0007			0.0427	0.0043		2.153	0.222	0.036					
'	0.012		0.0007			0.048	0.0056		2.1813	0.2225	0.039					
8	0.0121		0.00071			0.0507			2.19	0.2226	0.0443					
9	0.0127		0.0018			0.06			2.197	0.224	0.0551					
10	0.013		0.003			0.064			2.2216	0.224						
11	0.0139					0.0996			2.2222	0.22406						
12	0.014					0.10			2.238	0.225						
13	0.015								2.28	0.23						
14	0.016									0.2332						
15	0.012	0.01	0.0000			0.05	0.0020		2.47	0.222	0.026		0.0016			

Legend: W = Classical, C = Combustion, F = Fusion, A = AA or GFAA, I = ICP or DCP, IM=ICP-MS, D = DC Arc, O = AES, X = XRF, G = GDAES or GDMS, H = Hollow Cathode AES

0.01

0.003

(<0.008)

X,O,I

2.17

0.07

2.17

0.04

X,O,I

0.223

0.005

0.223

0.003

X,O,I

0.05

0.02

0.05

0.01

X,O,I

(<0.03)

X,O,I

(<0.004)

X,O,I

0.0039

0.0009

0.0039

0.0008

X,O,I

0.036

0.009

0.036

0.007

X,O,I

(<0.02)

X,O,I

0.0016

0.0005

(0.0016)

X,O,I

0.01

0.01

(<0.03)

O,I,G

0.013

0.002

0.013

0.001

X,O,I

Mean

STDV.

Certified 95% C.I.

Methods

0.0008

0.0009

0.0008

0.0006

X,O,I,G,C

Participating Laboratories

Dover, NJ Alcoa Howmet, Dover Alloy Tanner, AL Carpenter Technology - Athens Operations Davis Alloys Manufacturing, LLC Sharpsville, PA Kennametal Stellite, Inc. Belleville, ON Latrobe Specialty Metals, A Carpenter Co.

TimkenSteel Corporation

Anderson Laboratories, Inc. Greendale, WI Chicago Spectro Service Laboratory Chicago, IL Exova - Burlington Burlington, ON Hatfield, PA Laboratory Testing, Inc. Oxford Instruments Industrial Analysis Latrobe, PA Middleton, WI Canton, OH VHG Labs Manchester, NH

Traceability

Members of the "Inter-Laboratory Analysis Program" (ILAP) validate test methods and instrument performance utilizing SRMs, CRMs, and RMs produced by recognized Certifying Bodies. The specific SRMs, CRMs, and RMs applicable to the material covered by this certificate are:

ALPHA AR 667	BAS 408/1	BCS475	IARM 2C	JSS 194-1	LECO 501-147	NIST 1163	NIST 1760	NIST C1152				
ALPHA AR 874	BAS 409/1	BNS 15B	IARM 302B	JSS 195-1	LECO 501-502	NIST 1164	NIST 1761	NIST C1153				
ALPHA AR 882	BAS 410/2	BS 188B	IARM 327A	JSS 650-11	LECO 501-503	NIST 1171	NIST 1762	NIST C1154				
ALPHA AR1652	BAS 421	BS CA316-4	IARM 5G	JSS 651-11	LECO 501-645	NIST 1172	NIST 1763	NIST C1173				
ALPHA AR654	BAS 422	CZECH 181A	IARM 6A	JSS 652-11	LECO 502-416	NIST 1185	NIST 1764	NIST C1287				
ALPHA AR871	BAS 465/1	CZECH 186A	IARM 9A	JSS 653-11	LECO 502-459	NIST 1230	NIST 1764A	NIST C1288				
BAS 401/1	BAS 466/1	CZECH 187A	JSS 172-4	JSS 654-11	NBS 101e	NIST 1260	NIST 1765	NIST C1289				
BAS 401/2	BAS 467/1	CZECH 187B	JSS 173-4	JSS 655-11	NBS 36a	NIST 1261	NIST 1766	NIST C2400				
BAS 402/1	BAS 65	CZECH 188A	JSS 174-4	JSS ST01	NIST 1152	NIST 1261A	NIST 1767	NIST C2401				
BAS 403/1	BCR NR 58	CZECH 189A	JSS 175-4	JSS ST01-5	NIST 1155	NIST 1262	NIST 2166	SU 304-1				
BAS 404/1	BCS351	IARM 152B	JSS 190-1	JSS ST02-5	NIST 1155A	NIST 1262B	NIST 339	SU 304-2				
BAS 405/1	BCS461/1	IARM 154A	JSS 191-1	JSS ST03-5	NIST 1160	NIST 1263	NIST 361	SU 304-3				
BAS 406/1	BCS467-1	IARM 26A	JSS 192-1	JSS ST04-5	NIST 1161	NIST 1264	NIST 73C	SU 304-5				
BAS 407/2	BCS474	IARM 26C	JSS 193-1	JSS ST05-5	NIST 1162	NIST 1754	NIST C1151	SU 304-7				
Homogeneity and Uncertainty												
tainty" values, as reported adjacent to cortified concentration values, are based on a 05% Confidence Interval. Those estimated uncertainties include the combined of												

"Uncertainty" values, as reported adjacent to certified concentration values, are based on a 95% Confidence Interval. These estimated uncertainties include the combined effects of method imprecision, material inhomogeneity, and any bias between methods. Homogeneity data from experimental XRF results are reflected in both the overall statistics and certified data. Homogeneity samples are selected by a systematic sampling procedure. The number of samples may be determined by equation 1, where N_{prod} is the number of units produced and N_{min} is the number of samples used for homogeneity testing. These samples are arranged in a simple randomized design such that each sample is analyzed multiple times by XRF. Homogeneity is also determined within sample using an applied version of ASTM E826. A single factor ANOVA is used to calculated uncertainty due to inhomogeneity (U_{hom}). Uncertainty of the material is calculated by equation 2, where H=U_{hom}, S= Standard deviation, t= t-value at 95% CI, and n= number of observations.

1.
$$N_{min} = \max(10, \sqrt[3]{N_{prod}})$$
2. $U_{CRM} = \frac{\sqrt{H^2 + S^2}}{\sqrt{n}} * t$

The International Standards Organization (ISO) definitions, expressed in ISO Guide 30–1992 list the following:

Certifying Body: Any technically competent body (organization or firm, public or private) that issues a reference material certificate with the information detailed in ISO Guide 31. The only generally accepted certifying body in the United States for primary standards or Standard Reference Materials (SRM) is the U. S. Department of Commerce, National Institute of Standards & Technology (NIST), Gaithersburg, MD. All other certifying bodies in the United States produce Reference Materials (RM) or Certified Reference Materials (CRM).

Reference Material (RM): Material or substance, with one or more property values that are sufficiently homogeneous and well established, to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

Certified Reference Material (CRM): Reference material, accompanied by a certificate, with one or more property values certified by a procedure, which establishes its traceability to an accurate realization of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence.

Inter-Laboratory Analysis Program (ILAP): ASTM Standard E691-87 applies to inter-laboratory studies to "Determine the Precision of a Single Test Method", but also outlines a well thought out and logical plan for conducting an inter laboratory program involving multiple analytical techniques. Therefore, the guidelines established in ASTM E691-87 were applied to all aspects of this inter laboratory program, including the protocols for planning, handling, analysis and treatment of resulting data.

Methods of Analysis: The "Inter Laboratory Analysis Program" analyzes a wide variety of materials, and as a result, no single analytical method would provide optimum analytical results. Therefore, a combination of ASTM Standard Methods for classical wet chemistry, ICP, AA, Optical Emission, X-Ray spectrometric, and other accepted methods were used to produce analytical data. Carbon, Sulfur, Nitrogen, and Oxygen results were supplied from combustion and OE instrument procedures.

Expiration of Certification: The certification of this IARM is valid indefinitely, within the uncertainty specified, provided the IARM is handled and stored in accordance with the instructions stated on this certificate. The certification is nullified if the IARM is damaged, contaminated, otherwise modified, or used in a manner for which it was not intended.

Instructions for Use: The test surface is on the side opposite to the labeled surface, which includes the IARM number. The entire thickness of the unit is certified. However, the user is cautioned not to measure disks less than 2 mm thick when using X-ray fluorescence spectrometry. Each packaged disk has been prepared by finishing the test surface using a lathe. The user must determine the correct surface preparation procedure for each analytical technique. The user is cautioned to use care when either resurfacing the disk or performing additional polishing, as these processes may contaminate the surface. The minimum sample size for chips should be individually evaluated based on the analytical technique used; this would typically be greater than 0.1 grams. The material should be stored in a cool, dry location when not in use. Chips are not to be used for Oxygen analysis.

Selection of Materials: A "batch" or "series" is defined as a continuous length of bar produced from a single heat. The majority of IARM materials are in wrought condition; other methods of manufacture are utilized if necessary. ILAP samples are removed from equal sections from the total length of the bar. A portion of each section is converted to chips and a thin (pin) disk for analysis by classical wet chemistry, ICP, AA, and combustion procedures, and the balance remains as a thick disk for OES and X-Ray analysis.

David Coler, General Manager

Analytical Reference Materials International

