Analytical Reference Materials International

Certificate of Analysis Certified Reference Material

Grade: Ti 6Al-4V ELI / UNS R56407

Part Number (Q.A. NO.): IARM 176C

Interpretation of Data

- 1. Certified values listed below reflect analysis results submitted by qualified analytical laboratories using a combination of methods and instrumentation that emulate actual methods and instrumental techniques currently utilized in the analytical community.
- 2. Any data reported and enclosed by a **parentheses** () is a "best estimate" and is NOT CERTIFIED. This data could not be quantified sufficiently for certification. It was however, reported by enough laboratories to be considered as potentially present in the matrix of the material being examined.
- 3. The "Inter-laboratory Analysis Program" (ILAP) utilized in the establishment of the data are an ongoing program with permanent membership. Certain elements may be selected by a consensus of the members for more extensive testing. Therefore the data in **brackets** [] **indicates further testing is in process.** Chips are not certified for Hydrogen, Nitrogen, or Oxygen analysis.
- 4. The "±Estimated Uncertainty" is enclosed by a parentheses () below the individual element's concentration and is based on a Confidence Interval at 95%. Included in this estimated uncertainty, are the combined effects of method imprecision, material inhomogeneity, and any bias between methods.

Important: A "User Registration Card" accompanies all shipments. This card should be completed immediately upon receipt of materials with the appropriate user information. This is the only way in which ARMI can guarantee customer updates or possible data modifications!

Aluminum 5.95 (0.02)	<u>Carbon</u> 0.012 (0.0005)	Chromium 0.011 (0.001)	<u>Cobalt</u> (0.001)	Copper 0.002 (0.0005)	<u>Iron</u> 0.14 (0.004)	Hydrogen 0.0034 (0.0002)
Manganese 0.0011 (0.0003)	Molybdenum 0.004 (0.001)	Nickel 0.012 (0.001)	<u>Niobium</u> (0.005)	Nitrogen 0.005 (0.001)	Oxygen 0.110 (0.003)	<u>Palladium</u> (0.004)
Phosphorus	Silicon 0.017 (0.002)	<u>Tin</u> 0.005 (0.001)	Titanium 89.8 (0.3)	Vanadium 4.00 (0.02)	<u>Yttrium</u> (0.0001)	Zirconium 0.0023 (0.0004)

The laboratories participating in the "Inter-Laboratory Analysis Program" (ILAP) and certification of this material are as follows:

AB Sandvik Materials Technology - Sweden

Exova - Portland, OR

Leco Corporation - St. Joseph, MI

RTI Niles - Niles, OH

Special Metals IncoTest - Hereford, UK

Timet - UK Limited - Witton, Birmingham, UK

ATI Metals, Richland - Richland, WA Laboratory Testing, Inc. - Hatfield, PA Perryman Company - Houston, PA

Selmet, Inc. - Albany, OR

Timet - North American Operations - Henderson, NV

Wah Chang - Albany, OR

Traceability: All members of the "Inter-Laboratory Analysis Program" (ILAP) listed above validate test methods and instrument performance utilizing SRMs produced by the National Institute of Standards and Technology, (NIST) as well as other CRMs and RMs produced by recognized Certifying Bodies from around the world. The specific SRMs, CRMs, and RMs applicable to the material covered by this certificate are: NIST 648, 654B, 2433, LECO 501-320, 501-653, IARM 175A, BS T-5, MBH 101XT16-A, LECO 501-996, 502-809, IARM 176B, 177A, 177B, BS T-20, T-23, T-26, NIST 173C, 3107, 3113, 3114, 3131A, 3132, 3134, 3137, 3138, 3139A, 3155, 3161A, 3163, 3167A, 3169, VHG 44/03, ALPHA AR651, LECO 501-664, 501-995, BCS 351, 356, 454/1, 462/1, LECO 501-653, 762-741, ALPHA AR637, AR649, , LECO 501-320, 501-674, NIST 173B, ALPHA AR650, NIST 173B, 647, 651, IH SDN 109, 111, 120A, ALPHA AR642, NIST 654B, 3107, 3138, 3163, 3167A, ALPHA AR637, LECO 501-644, 501-674, NIST 166C, IARM 269A, 271A, IH BN384, W68B, H073, LECO 501-676, , NIST 173B, IARM 176B, BCS 451/1, ALPHA AR642, LECI 501-320, NIST 641, 642, 644, 646, 654B, 1128, 1133, IARM 175B, BS T-2, T-4, T-7, T-13, T-14, T-15, T-19, T-22, T-24, TX-4.

A specific line of traceability is established to NIST and other Certifying Bodies for those elements that are noted as "Certified Values" on the Certificates of Analyses referenced above.

See Reverse Side for Statistical Data and Additional Information Regarding this Material.

The following data and accompanying statements represent all pertinent information reported in the ILAP as it applies to the chemical characterization of this material as of 08/24/2017.

176C	Al	С	Cr	Cu	Н	Fe	Mn	Мо	Ni	Nb	N	0	Pd	Ru	Si
1	5.99	0.013	0.010	0.001	0.0034	0.135	0.0014	0.005	0.010	0.0075	0.0040	0.1120	0.0069	0.0002	0.0207
2	5.900	0.012	0.0114	0.0029	0.0037	0.138	0.0010	0.0050	0.0121	0.004	0.0051	0.1132	0.002	0.001	0.015
3	5.927	0.013	0.012	0.0023	0.0035	0.144	0.0007	0.0033	0.011	0.0049	0.0041	0.104	0.0070	0.0009	0.0185
4	5.90	0.0118	0.0113	0.002	0.0036	0.1422	0.0009	0.004	0.0126	0.0035	0.0048	0.1051	0.001	0.0015	0.0129
5	5.927	0.0117	0.0095	0.0025	0.0029	0.1352	0.0013	0.0042	0.0099	0.0062	0.0057	0.1129	0.0010		0.014
6	6.012	0.0122	0.011	0.0022	0.0031	0.139	0.0013	0.0043	0.0105		0.0056	0.110			0.0210
7	5.947	0.0120	0.0109	0.0028	0.0032	0.1557		0.004	0.0128		0.0062	0.1070			0.0175
8	5.954	0.0114	0.0121	0.0021	0.0039	0.1472			0.0130		0.0037	0.1134			0.018
9	5.93	0.0105	0.0099	0.0018	0.0034	0.140			0.012		0.0055	0.1115			0.018
10	6.002	0.0133	0.0125	0.0033	0.0034	0.145			0.0117		0.004	0.1096			0.0204
11	5.95	0.013	0.0125		0.0031	0.1483			0.013		0.0064	0.1085			0.014
12	5.995	0.0118	0.012			0.140			0.0134		0.0062	0.109			0.012
13		0.0115	0.0108			0.149			0.0136			0.1186			0.0165
14						0.1322						0.1007			
Mean	5.953	0.0121	0.0112	0.0023	0.0034	0.1422	0.0011	0.0043	0.0120	0.0052	0.0051	0.1097	0.0036	0.0009	0.0168
STDV.	0.039	0.0008	0.0010	0.0006	0.0003	0.0064	0.0003	0.0006	0.0013	0.0016	0.0010	0.0045	0.0031	0.0005	0.0030
Certified	5.95	0.012	0.011	0.002	0.0034	0.14	0.0011	0.004	0.012	(0.005)	0.005	0.110	(0.004)	(0.001)	0.017
95% C.I.	0.02	0.0005	0.001	0.0005	0.0002	0.004	0.0003	0.001	0.001		0.001	0.003			0.002
Methods	X,G,I,O	C.O	X,G,I,O	X.I.O	F.O	X,G,I,O	X,I,O	X,I,O	X,G,I,O	X,I,O	F.O	F.O	X.I	X.I	X,G,I,O
	71,0,1,0	0,0	7,0,1,0	7,1,0	1,0	Λ,Ο,ι,Ο	7,1,0	۸,۱,۰	۸,۵,۱,۰	7,1,0	1,0	1,0	Λ,ι	7,1	7,0,1,0
		- , -		, , , -	, -						= GDAES or G	, -		,	7,0,1,0
176C		- , -		, , , -	, -						, -	, -		,	W
	Legend:	W = Classica	al, C = Comb	oustion, F = l	, -	A or GFAA, I	= ICP or DC	P, D = DC A	rc, O = AES,	X = XRF, G :	= GDAES or G	DMS, H = Holl	low Cathoo	le AES	
176C	Legend:	W = Classica Sn	al, C = Comb	oustion, F = I	Fusion, A = AA	A or GFAA, I Zr	= ICP or DC	P, D = DC A	rc, O = AES, Co	X = XRF, G :	= GDAES or G	DMS, H = Holl	low Cathoo	de AES	W
176C	Legend: Ta 0.0055	W = Classica Sn 0.007	al, C = Comb Ti 89.8	v 4.005	Fusion, A = A/ Y 0.0002	A or GFAA, I Zr 0.0017	= ICP or DC	P, D = DC A B 0.0001	c, O = AES, Co 0.001	X = XRF, G :	= GDAES or G	Mg <0.008	P 0.0007	s 0.0006	W 0.0001
176C 1 2 3 4	Legend: Ta 0.0055 0.005	W = Classica Sn 0.007 0.0073	al, C = Comb Ti 89.8 89.62	v 4.005 3.986	Fusion, A = A/ Y 0.0002 0.000002	Zr 0.0017 0.0025	= ICP or DC	B 0.0001 0.0001	c, O = AES, Co 0.001 0.0006	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001	P 0.0007	S 0.0006 0.0006	W 0.0001 0.0005
176C 1 2 3	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023	Ti 89.8 89.62 89.96	v 4.005 3.986 3.979 3.976 4.026	Fusion, A = A/ Y 0.0002 0.000002 0.000003	Zr 0.0017 0.0025 0.0030 0.0028 0.0025	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054	Ti 89.8 89.62 89.96 90.28	v 4.005 3.986 3.979 3.976 4.026 3.97	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 3.976 4.026 3.97 4.057	Y 0.0002 0.00002 0.000003 0.0001	Zr 0.0017 0.0025 0.0030 0.0028 0.0025	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.006	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 3.976 4.026 3.97 4.057 3.997	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 3.976 4.026 3.97 4.057 3.997 4.02	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8 9	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.006	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 3.976 4.026 3.97 4.027 3.997 4.027 4.029	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8 9 10	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.006	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 4.026 3.97 4.026 3.97 4.057 3.997 4.02 4.034 3.97	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8 9 10 11 12	Ta 0.0055 0.005 0.0003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.006	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 4.026 3.97 4.026 3.97 4.057 3.997 4.02 4.034 3.97 4.024	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, I Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020 0.0020	= ICP or DC	B 0.0001 0.0001	Co 0.001 0.0006 0.0011	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8 9 10	Legend: Ta 0.0055 0.005 0.0003 0.00003	W = Classica Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.006	Ti 89.8 89.62 89.96 90.28 89.68	v 4.005 3.986 3.979 4.026 4.026 3.97 4.027 4.097 4.024 4.034 4.034 4.034 4.034 4.034 4.034 4.034 4.034	Y 0.0002 0.00002 0.000003 0.0001	A or GFAA, 1 Zr 0.0017 0.0025 0.0030 0.0028 0.0025 0.0020 0.0020 0.0015	= ICP or DC	B 0.0001 0.0001	Co = AES, Co = 0.001 0.0001 0.0006 0.0011 0.002	X = XRF, G :	= GDAES or G	Mg <0.008 <0.0001 0.0002	P 0.0007	S 0.0006 0.0006 0.0002	W 0.0001 0.0005
176C 1 2 3 4 5 6 7 8 9 10 11 12 13	Legend: Ta 0.0055 0.005 0.0003 0.002	W = Classic: Sn 0.007 0.0073 0.0023 0.0023 0.0055 0.0040 0.0054 0.0055 0.006 0.0044	al, C = Comt Ti 89.8 89.62 89.62 89.96 89.68 89.50	v 4.005 3.986 3.979 4.026 4.026 4.057 3.997 4.057 3.997 4.057 3.997 4.034 3.97 4.034 4.034 4.034	Fusion, A = A/Y 0.0002 0.000003 0.00001 0.0003	A or GFAA, 1 Zr 0.0017 0.0025 0.0025 0.0028 0.0028 0.0020 0.0020 0.0021	= ICP or DC	P, D = DC A B 0.0001 0.0003	CO = AES, CO 0.001 0.0006 0.0011 0.002	X = XRF, G :	= GDAES or G	DMS, H = Holi Mg <0.008 <0.0001 0.0002 0.00008	DW Cathor P 0.0007 0.010 0.010 0.0054	le AES S 0.0006 0.0006 0.0002 0.0006 0.0006	W 0.0001 0.0005 0.0002
176C 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean STDV.	Legend: Ta 0.0055 0.005 0.0003 0.002	W = Classic: Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.0066 0.0044	al, C = Comb Ti 89.8 89.62 89.96 90.28 89.68 89.50	v 4.005 3.986 3.986 3.976 4.026 4.027 4.027 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 4.032 4	Fusion, A = A/ Y 0.0002 0.000002 0.000003 0.0001 0.0003	A or GFAA, Zr 0.0017 0.0025 0.0030 0.0028 0.0020 0.0020 0.0020 0.0015	= ICP or DC	P, D = DC A B 0.0001 0.0001 0.0003	c, O = AES, Co 0.001 0.0006 0.0011 0.0002	X = XRF, G :	= GDAES or G	DMS, H = Holl Mg <0.008 <0.0001 0.0002 0.00008	P	le AES S 0.0006 0.0006 0.0002 0.0002 0.0006	0.0003 0.0002
176C 1 2 3 4 5 6 7 8 9 11 11 12 13 Mean STDV. Certified	Legend: Ta 0.0055 0.005 0.0003 0.002	W = Classic: Sn 0.007 0.0073 0.0023 0.0023 0.0055 0.0040 0.0055 0.006 0.0044	al, C = Comt Ti 89.8 89.62 89.96 89.96 90.28 89.68 89.50	v 4.005 3.986 3.987 4.026 3.97 4.026 3.97 4.027 4.027 4.02 4.034 4.022 3.989 4.0024 4.0024 4.0024 4.0024 4.00275	Fusion, A = A/Y 0.0002 0.000003 0.00001 0.0003	A or GFAA, Zr 0.0017 0.0025 0.0025 0.0020 0.0015	= ICP or DC	P, D = DC A B 0.0001 0.0003	CO = AES, CO 0.001 0.0006 0.0011 0.002	X = XRF, G :	= GDAES or G	DMS, H = Holi Mg <0.008 <0.0001 0.0002 0.00008	DW Cathor P 0.0007 0.010 0.010 0.0054	le AES S 0.0006 0.0006 0.0002 0.0006 0.0006	W 0.0001 0.0005 0.0002
176C 1 2 3 4 5 6 7 8 9 10 11 12 13 Mean STDV.	Legend: Ta 0.0055 0.005 0.0003 0.002	W = Classic: Sn 0.007 0.0073 0.0023 0.0055 0.0040 0.0054 0.0055 0.0066 0.0044	al, C = Comb Ti 89.8 89.62 89.96 90.28 89.68 89.50	v 4.005 3.986 3.986 3.976 4.026 4.027 4.027 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 3.97 4.034 4.032 4	Fusion, A = A/ Y 0.0002 0.000002 0.000003 0.0001 0.0003	A or GFAA, Zr 0.0017 0.0025 0.0030 0.0028 0.0020 0.0020 0.0020 0.0015	= ICP or DC	P, D = DC A B 0.0001 0.0001 0.0003	c, O = AES, Co 0.001 0.0006 0.0011 0.0002	X = XRF, G :	= GDAES or G	DMS, H = Holi Mg <0.008 <0.0001 0.0002 0.00008	DW Cathor P 0.0007 0.010 0.010 0.0054	le AES S 0.0006 0.0006 0.0002 0.0002 0.0006	0.0003 0.0002

Legend: W = Classical, C = Combustion, F = Fusion, A = AA or GFAA, I = ICP or DCP, D = DC Arc, O = AES, X = XRF, G = GDAES or GDMS, H = Hollow Cathode AES

The International Standards Organization (ISO) definitions, expressed in ISO Guide 30–1992 list the following:

<u>Certifying Body:</u> Any technically competent body (organization or firm, public or private) that issues a reference material certificate, which provides the information, detailed in ISO Guide 31. The only generally accepted certifying body in the United States for primary standards - Standard Reference Materials (SRM) is the U. S. Department of Commerce, National Institute of Standards & Technology, (NIST), Gaithersburg, MD. All other certifying bodies in the United States produce Reference Materials (RM) or Certified Reference Materials (CRM).

Reference Material (RM): Material or substance one or more of whose property values are sufficiently homogeneous and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

Certified Reference Material (CRM): Reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure, which establishes its traceability to an accurate realization of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence.

<u>Inter-Laboratory Analysis Program (ILAP):</u> Although ASTM Standard E691-87 applies to inter-laboratory studies to "Determine the Precision of a Single Test Method", it is also a well thought out and logical plan for conducting an inter-laboratory program involving multiple techniques. Therefore, the planning, conducting, analyzing, protocol, and treatment of data resulting from this inter-laboratory program were performed utilizing the guidelines established in ASTM E691-87.

<u>Methods of Analysis:</u> In view of the fact, that the "Inter-Laboratory Analysis Program" entails a wide variety of materials, no single analytical method would provide optimum data results. Therefore, the methods utilized were a combination of ASTM Standard Methods for classical wet chemistry, ICP, AA, Optical Emission, and X-Ray spectrometric methods. The determinations for Carbon, Sulfur, Nitrogen, and Oxygen are the result of combustion and OE instrument procedures.

Expiration of Certification: The certification of this IARM is valid indefinitely, within the uncertainty specified, provided the IARM is handled and stored in accordance with the instructions stated on this certificate. The certification is nullified if the IARM is damaged, contaminated, otherwise modified, or used in a manner for which it was not intended

Instructions for Use: The test surface is the side opposite to the labeled surface, which includes the IARM number. The entire thickness of the unit is certified. However, the user is cautioned not to measure disks less than 2 mm thick when using X-ray fluorescence spectrometry. Each packaged disk has been prepared by finishing the test surface using a lathe. The user must determine the correct surface preparation procedure for each analytical technique. The user is cautioned to use care when either resurfacing the disk or performing additional polishing as these processes may contaminate the surface. When not in use, the material should be stored in a cool, dry location. This material was tested using both the solid disks and chips prepared from the disks. The certified values are considered representative of the overall average composition of the material. Chips are not intended to be used for Hydrogen, Nitrogen, or Oxygen analysis.

Selection of Materials: A "batch" or "series" is defined as a single bar of one continuous length and heat. The majority of materials are in wrought condition; other methods of manufacture are utilized as a less desirable resort. ILAP samples are taken by removing a section, a minimum of, every one-twelfth of total length from the entire bar. A portion of the section is converted to chips and thin (pin) disk for analysis by classical wet chemistry, ICP, AA, and combustion procedures, and the balance remains as a thick disk for OES and X-Ray analysis. This systematic sampling procedure results in the homogeneity being reflected as a product of the overall statistics and certified data. This method of homogeneity testing is in accordance with ISO Guide 34, regarding the systematic selection and testing of a representative number of units for the assessment of homogeneity.

William D. Britt, President, & General Manager
Analytical Reference Materials International Corporation

Certificate No.: 176C-02102011-IARM-P

Certificate Date: **02/10/2011** Revision Date/No.: **08/28/2017**

Analytical Reference Materials International

Provisional Certificate of Analysis Certified Reference Material

